107 research outputs found

    Predictive intelligence to the edge through approximate collaborative context reasoning

    Get PDF
    We focus on Internet of Things (IoT) environments where a network of sensing and computing devices are responsible to locally process contextual data, reason and collaboratively infer the appearance of a specific phenomenon (event). Pushing processing and knowledge inference to the edge of the IoT network allows the complexity of the event reasoning process to be distributed into many manageable pieces and to be physically located at the source of the contextual information. This enables a huge amount of rich data streams to be processed in real time that would be prohibitively complex and costly to deliver on a traditional centralized Cloud system. We propose a lightweight, energy-efficient, distributed, adaptive, multiple-context perspective event reasoning model under uncertainty on each IoT device (sensor/actuator). Each device senses and processes context data and infers events based on different local context perspectives: (i) expert knowledge on event representation, (ii) outliers inference, and (iii) deviation from locally predicted context. Such novel approximate reasoning paradigm is achieved through a contextualized, collaborative belief-driven clustering process, where clusters of devices are formed according to their belief on the presence of events. Our distributed and federated intelligence model efficiently identifies any localized abnormality on the contextual data in light of event reasoning through aggregating local degrees of belief, updates, and adjusts its knowledge to contextual data outliers and novelty detection. We provide comprehensive experimental and comparison assessment of our model over real contextual data with other localized and centralized event detection models and show the benefits stemmed from its adoption by achieving up to three orders of magnitude less energy consumption and high quality of inference

    Reinforcement machine learning for predictive analytics in smart cities

    Get PDF
    The digitization of our lives cause a shift in the data production as well as in the required data management. Numerous nodes are capable of producing huge volumes of data in our everyday activities. Sensors, personal smart devices as well as the Internet of Things (IoT) paradigm lead to a vast infrastructure that covers all the aspects of activities in modern societies. In the most of the cases, the critical issue for public authorities (usually, local, like municipalities) is the efficient management of data towards the support of novel services. The reason is that analytics provided on top of the collected data could help in the delivery of new applications that will facilitate citizens’ lives. However, the provision of analytics demands intelligent techniques for the underlying data management. The most known technique is the separation of huge volumes of data into a number of parts and their parallel management to limit the required time for the delivery of analytics. Afterwards, analytics requests in the form of queries could be realized and derive the necessary knowledge for supporting intelligent applications. In this paper, we define the concept of a Query Controller ( QC ) that receives queries for analytics and assigns each of them to a processor placed in front of each data partition. We discuss an intelligent process for query assignments that adopts Machine Learning (ML). We adopt two learning schemes, i.e., Reinforcement Learning (RL) and clustering. We report on the comparison of the two schemes and elaborate on their combination. Our aim is to provide an efficient framework to support the decision making of the QC that should swiftly select the appropriate processor for each query. We provide mathematical formulations for the discussed problem and present simulation results. Through a comprehensive experimental evaluation, we reveal the advantages of the proposed models and describe the outcomes results while comparing them with a deterministic framework

    Distributed localized contextual event reasoning under uncertainty

    Get PDF
    We focus on Internet of Things (IoT) environments where sensing and computing devices (nodes) are responsible to observe, reason, report and react to a specific phenomenon. Each node captures context from data streams and reasons on the presence of an event. We propose a distributed predictive analytics scheme for localized context reasoning under uncertainty. Such reasoning is achieved through a contextualized, knowledge-driven clustering process, where the clusters of nodes are formed according to their belief on the presence of the phenomenon. Each cluster enhances its localized opinion about the presence of an event through consensus realized under the principles of Fuzzy Logic (FL). The proposed FLdriven consensus process is further enhanced with semantics adopting Type-2 Fuzzy Sets to handle the uncertainty related to the identification of an event. We provide a comprehensive experimental evaluation and comparison assessment with other schemes over real data and report on the benefits stemmed from its adoption in IoT environments

    An efficient time optimized scheme for progressive analytics in big data

    Get PDF
    Big data analytics is the key research subject for future data driven decision making applications. Due to the large amount of data, progressive analytics could provide an efficient way for querying big data clusters. Each cluster contains only a piece of the examined data. Continuous queries over these data sources require intelligent mechanisms to result the final outcome (query response) in the minimum time with the maximum performance. A Query Controller (QC) is responsible to manage continuous/sequential queries and return the final outcome to users or applications. In this paper, we propose a mechanism that can be adopted by the QC. The proposed mechanism is capable of managing partial results retrieved by a number of processors each one responsible for each cluster. Each processor executes a query over a specific cluster of data. Our mechanism adopts two sequential decision making models for handling the incoming partial results. The first model is based on a finite horizon time-optimized model and the second one is based on an infinite horizon optimally scheduled model. We provide mathematical formulations for solving the discussed problem and present simulation results. Through a large number of experiments, we reveal the advantages of the proposed models and give numerical results comparing them with a deterministic model. These results indicate that the proposed models can efficiently reduce the required time for returning the final outcome to the user/application while keeping the quality of the aggregated result at high levels

    Predictive intelligence of reliable analytics in distributed computing environments

    Get PDF
    Lack of knowledge in the underlying data distribution in distributed large-scale data can be an obstacle when issuing analytics & predictive modelling queries. Analysts find themselves having a hard time finding analytics/exploration queries that satisfy their needs. In this paper, we study how exploration query results can be predicted in order to avoid the execution of ‘bad’/non-informative queries that waste network, storage, financial resources, and time in a distributed computing environment. The proposed methodology involves clustering of a training set of exploration queries along with the cardinality of the results (score) they retrieved and then using query-centroid representatives to proceed with predictions. After the training phase, we propose a novel refinement process to increase the reliability of predicting the score of new unseen queries based on the refined query representatives. Comprehensive experimentation with real datasets shows that more reliable predictions are acquired after the proposed refinement method, which increases the reliability of the closest centroid and improves predictability under the right circumstances

    Scheduling the Execution of Tasks at the Edge

    Get PDF
    The Internet of Things provides a huge infrastructure where numerous devices produce, collect and process data. These data are the basis for offering analytics to support novel applications. The processing of huge volumes of data is a demanding process, thus, the power of Cloud is already utilized. However, latency, privacy and the drawbacks of this centralized approach became the motivation for the emerge of edge computing. In edge computing, data could be processed at the edge of the network; at the IoT nodes to deliver immediate results. Due to the limited resources of IoT nodes, it is not possible to have a high number of demanding tasks locally executed to support applications. In this paper, we propose a scheme for selecting the most significant tasks to be executed at the edge while the remaining are transferred into the Cloud. Our distributed scheme focuses on mobile IoT nodes and provides a decision making mechanism and an optimization module for delivering the tasks that will be executed locally. We take into consideration multiple characteristics of tasks and optimize the final decision. With our mechanism, IoT nodes can be adapted to, possibly, unknown environments evolving their decision making. We evaluate the proposed scheme through a high number of simulations and give numerical results

    An Intelligent Edge-Centric Queries Allocation Scheme based on Ensemble Models

    Get PDF
    The combination of Internet of Things (IoT) and Edge Computing (EC) can assist in the delivery of novel applications that will facilitate end users activities. Data collected by numerous devices present in the IoT infrastructure can be hosted into a set of EC nodes becoming the subject of processing tasks for the provision of analytics. Analytics are derived as the result of various queries defined by end users or applications. Such queries can be executed in the available EC nodes to limit the latency in the provision of responses. In this paper, we propose a meta-ensemble learning scheme that supports the decision making for the allocation of queries to the appropriate EC nodes. Our learning model decides over queries' and nodes' characteristics. We provide the description of a matching process between queries and nodes after concluding the contextual information for each envisioned characteristic adopted in our meta-ensemble scheme. We rely on widely known ensemble models, combine them and offer an additional processing layer to increase the performance. The aim is to result a subset of EC nodes that will host each incoming query. Apart from the description of the proposed model, we report on its evaluation and the corresponding results. Through a large set of experiments and a numerical analysis, we aim at revealing the pros and cons of the proposed scheme
    • …
    corecore